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With the general third-order equations of motion for a test particle, Synge's 
third-order orbital equations at great distance in the weak gravitational field 
generated by a massive body are derived. The body has an axis of symmetry 
around which is rotating steadily. The results found for the advance of perihelion 
using first integrals of motion for the general equations show that the effect due 
to the inner stress of the body can be derived for orbits with inclination with 
respect to the equator of the body. Then, by means of the variation of the 
parameters method, we obtain with the equations at great distance the corre- 
sponding perturbations on the elements of such orbits in the field considered. 
These perturbations result to be of second order with regard to the mass of the 
body (the basis of the approximation). 

1. I N T R O D U C T I O N  

In a prev ious  p a p e r  ( G a m b i ,  1983) Synge ' s  a p p r o x i m a t i o n  m e t h o d  has 
been  a p p l i e d  to ob ta in  the  weak  grav i ta t iona l  field o f  a mass ive  b o d y  with 
an axis o f  symmet ry  a r o u n d  which  is ro ta t ing  s teadi ly  (Synge,  1970). The 
m e t h o d  was car r ied  out  to inc lude  the second  a p p r o x i m a t i o n  in the  field, 
which  is enough  to t h i r d - o r d e r  equa t ions  o f  mot ion .  This means  tha t  terms 
in it o f  o r d e r  m 2 are r e t a ined  as s ignif icant  and  tha t  there  is an er ror  of  
o rde r  m 3 in the  field equa t ions ,  m being  the mass  o f  the body .  

The ma in  difference be tween  Synge ' s  a p p r o a c h  and  that  o f  C h a n d r a s e k -  
ha r  (1965) and  C h a n d r a s e k h a r  and  N u t k u  (1969) lies in the gauge  cond i t ions  
used.  Whereas  the  cond i t ions  o f  these  au thors  l ead  to Poisson equa t ions  
and  ins tan taneous  po ten t i a l  so lu t ions ,  Synge 's  cond i t ions  l ead  to 
i n h o m o g e n e o u s  wave equa t ions  and  r e t a r d e d  po ten t ia l  so lu t ions  as in the  
scheme o f  A n d e r s o n  and  Decan io  (1975). In  this respect ,  Synge ' s  m e t h o d  
is c loser  to tha t  o f  A n d e r s o n  and  Decan io  a l though  thei r  gauge  cond i t ions  
and  co r r e spond ing  energy p seudo tenso r s  are also different.  
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In particular, the field obtained in Gambi (1983) is more sophisticated 
than the one obtained in the standard post-Newtonian approximation 
(Chandrasekhar, 1965) because the O ( m  2) terms in the second-order devi- 
ations y,~ [(23) below] are explicitly determined and the same happens 
with the O ( m  5/2) terms of  y~,4. 

Starting with Synge's third-order equations of  motion, in the present 
paper the third-order general orbital equations corresponding to this field 
and also we obtain the corresponding equations for the motion at great 
distance of the test particle. These equations show that the effect from the 
inner stress of  the massive body on the orbital motion is of order m 2, or to 
be more precise, of order rnZ/r  3, r being the distance from the test particle 
to the massive body. 

When the massive body has an equatorial plane of  symmetry, we can 
find in the case of an equatorial orbit (Gambi, 1985) the diverse contributions 
to the advance of  perihelion of such an orbit only with the help of  the two 
first integrals which correspond to the energy and angular momentum of 
the test particle. But in the case of an arbitrary orbit (that is to say, with 
inclination with respect to the equator) it is necessary to return to the general 
equations. Then, in order to derive the contributions to the variation of the 
elements of such an orbit due to the inner stress of the body, we use the 
corresponding orbital equations at great distance and the perturbation 
theory. The expressions found show that the corrections only appear in the 
mean anomaly, in the argument of perihelion, and in the longitude of the 
ascending node. 

2. NOTATION AND GENERAL M E T H O D  

For details of  Synge's method the reader is referred to Synge (1970). 
Here we shall simply give a brief outline of the method. For a metric 

g,b = 6ab + Yah (1)  

we have the linear part of  the Einstein tensor Lab defined by 

L a b  = l ( 'yab,  c c -Jr "Ycc, ab - -  "Yac, cb - -  T b  . . . .  ) 

- �89 (ycc, dd -- Yca, ca ) (2) 

and the truncated Einstein tensor Gab by 

~ a b  = G a b  __ L a  b (3) 

the comma denoting partial differentiation. Latin indices take the values 1, 
2, 3, 4 and greek indices 1, 2, 3. 
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We take the point of view that the energy tensor T ab is given and from 
it we generate a sequence of metrics 

g a b  = t~ab + Y a b  
M M 

by the recurrence formula 

Y*b = 2KK~ H r" 
M M - - 1  

where 

( M = 0 ,  1 , 2 , . . . ,  N) (4) 

( M =  1 , 2 , . . . ,  N),  Y~b=0 (K =8~r) (5) 
0 

T 'b=  ~ ( M = 0 ,  1,2, N) (6) ")lab - -  2 ~ a b  ~l d d  �9 �9 �9 , 
M M M 

/_/~b = Tab + K-l~ab (M = 0, 1, 2 , . . . ,  N) (7) 
M M 

with ~ab = ~ab( y ) (M = 0, 1 , . . . ,  N) and 
M M 

K r ab = - 3,~,t~b~J + J ( t~arDbs + 3bsDa, -- 3abDrs ) J (8) 

Da and Dab indicate partial derivatives of first and second orders, 
respectively, and J is defined by -p 

i f ( x ,  t )=-(47r)-1  / f(x ' ,  t - I x - x ' l ) l x - x ' l  - ~  d3x' (9) 
4 /  

so that 

[ ] J f = J [ ] f = f  (?q =Daa) (10) 

From (5) and (8) each term of the sequence (4) satisfies the gauge 
conditions 

7*b,b = 0 ( M = 0 ,  1 , 2 , . . . ,  N )  (11) 
M 

This simplifies Lab given by (2) to read Lab = 1[] 3/*ab and then we have 
M M M 

M M - - I  

( M =  1, 2 , 3 , . . . ,  N) (12) 

In order to introduce approximations we introduce a small parameter 
k in terms of which the energy tensor components can be expressed, and 
provisionally we assume 

T ab = O ( k )  (13) 
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Then we have from (5) 

T a b  =- y a b - t - O ( k  r~) 
M M - 1  

( M =  1 , 2 , 3 , . . . ,  N)  (14) 

and 

d a b  : A + Gab+ O ( k  M 1), 
M M--1 

( M =  1 , 2 , 3 , . . . ,  N)  (15) 

If we stop at the Nth  term, Y,b, and impose o n  T ab the equations 
N 

H ab, b = 0  (16) 
N--1 

then gab satisfy 
N 

G ab = - K T  ab + O ( k  N+I) (17) 
N 

so that the field equations are satisfied with an error O ( k  N+I) and we have 

Y*b = --2KJ H ab (18) 
N N--1 

The equations (16) are equivalent to 

Tab I b = O(kN+l)  (19) 
N 

where the N below the stroke indicates covariant derivative with respect 
to gab- By this they are called by Synge equations of  motion in Nth  

N--1 

approximation. 
With this scheme we can consider, in a systematic way, approximate 

solutions of  Einstein's field equations and equations of motion to any degree 
of accuracy we wish. Note that for equations of motion in Nth  approxima- 
tion we only need the metric components t o  o ( k N - 1 ) .  Later we shall relax 
this requirement when we consider the separate components of  these 
equations and the differing orders of magnitude for the components of  the 
energy tensor T ab . In the present work we shall consider equations of motion 
in third approximation. 

3. DESCRIPTION OF THE MODEL 

The weak gravitational field which we consider is generated by a massive 
body rotating steadily around its axis of symmetry. 
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We assume as topology of  space-time the one of  a Euclidean 4-space. 
We use rectangular Cartesian coordinates x .  and imaginary time x4 = it. 
Choosing as axis of  symmetry the axis Ox3, we have 

U U 
U 1 ----- - - - - X 2 ,  U 2 = - -Xl~ ,  U 3 = O ,  [/4 = i (20) 

r r 

a~__~ = o, ap = o (20') 
Ot Ot 

u~ = 0 ( k l / 2 ) ,  p = O ( k )  (20") 

where us and u are, respectively, the Eulerian 3-velocity and the velocity 
of  the body satisfying u = u ( r ,  x3 ) ( r2=x~+x~) ,  and p = p ( r ,  x3) is its 
Eulerian density, k is a small dimensionless parameter  of  the same order 
of  the mass of  the body measured in seconds which constitutes the basis 
of  the approximation.  All magnitudes are measured in seconds. For details 
see Gambi  (1983). 

Let I be the history of the world tube corresponding to the body and 
E the part  of  space-time exterior to I. We take as Eulerian description of  
the model the following 

T ~ = pu+,u~ - S ~ ,  T ~4 = ipu~,, T ~ = - p  < 0 in I 
(21) 

T ~b = 0 in E 

and we call to S~,~ the Eulerian stress of  the body. S ~  is O(k2).  I f  T ab 
satisfy the equations of  motion 

du~ 
p - - ~ - -  S~,~ = pV.~, + O ( k  3) (22) 

t + pu~ ~, = O( k 7/2) (22') 

then the second-order metric deviations Tab with respect to the Minkowskian 
metric 6~b are given by 

~.~ = 2( V +  V 2 ) ~  - 2 J [ ( p u , . u ~ ) * ]  
~ 1 * 2 + 4JE~KS,.~ + ( V ),,.~ - V . V ~ ]  + O(k 3) 

-y~,,) = - 2 K / ] ( p u . )  - 8iJ(V~W~,t, - V,~=~V~ (23) 

+ Wj, A V -  VAWI~)+ O ( k  7/2) 

y ~  = - 2 (  V -  V 2 ) - KJS,,o- + K J ( p u , u , )  + O( k 3) 
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where 

J[f(x, t)] =- (4~r) - '  / f ( x ' ,  t ) l x - x ' l  -~ d3x' (24) 

S*~ = S~,~-�89 (pu~u~)* = ( p u ,  u~) - �89  2 (24') 

V= -4~.~(p) (24") 

W~ = -4~rJ(pu~,) (24") 

We then have a universe which contains a body of arbitrary shape with 
the only restriction that it possesses an axis of symmetry around which is 
rotating with small velocity, u, = O(kl/2), in his own gravitational field. 
The density p is small, O(k) .  The energy tensor is given by (21), where S~ 
is the Newtonian stress under gravity. The metric tensor is 

g~b = 8~b + ?/~b (25) 

where Y~b is given by (23). 
It may be shown that the corresponding field at great distance is given 

by 

g ~ , ~ = ~ , ~ + 2 ~ . ( m + m ' ) r  -~, g 4 4 = l - 2 ( m + m ' ) r  - l  
(26) 

g14 = 2ix2r-3L3, g 2 4  = -2 ix lr -3L3,  g34 = 0 

where m is the mass of the body, L3 its angular momentum with respect 
to Ox3, and m'= ~ p V d s x '  is the mass of the field. 

4. THE ORBITAL EQUATIONS 

In order to derive the orbital equations in the field considered we begin 
considering Synge's equations of motion in third approximation [eft 
equations (1.61), (1.62), and (1.63) of Synge, 1970]: 

T~  b = pft .  + u~( fJ + pu~,~.) - S.~,~, = p V ~  + Y~ + O ( k  4) 
(27) 

-iT~,~ b = tJ + pu~,~ = - p V ,  + Z + O(  k 9/2) 

where 

Y~ = T'~~ +4pu~,( W~,~, - W~.,~-g~,,V,) 
(28) 

+ pD~( �89  V2 + ko.o.)+4pDtW~ = O ( k  3) 

Z = - T~ -4T~"W~,~  + pu,,D,.(4Ko.,~ - V 2 - 2N) 

V - ~ D , I 2 p  - I , (pV,  t)] (28') + p D t [ 3 K , ~ , - 2 N -  2 1 2 

1 2 o'er 1 - 2 p V ~ W ~ . + ~ p D ,  I~(T + ~ p V ) =  O ( k  7/2) 
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and K,,~ = I o T  ~176 N =  I o ( p V ) ,  where 

/De(x, t) = I .f(x', t)lx-x'l"-' d~x' (n = 0, 1, 2) (28") 

Now we take the case in which the motion of only two bodies is considered 
and we suppose that one of the bodies is very small with respect to the 
other. Then we can neglect in (27) the self-potentials in the small body. 
Furthermore as the field (25) is stationary, all terms in (27) in which 
derivatives with respect to t appear vanish. Then, with these assumptions, 
equations (27) are reduced to 

zip = V o + o - ' T r  

+ 4u~( Wp,~ - W~,o ) - 4 V V o  + K,.~,o + O ( k  3) (29) 

and from here we have 

zip = Vp + V p (uZ-4v)  -4uo f ' +  Po - Q,p 

+4( Wp.,  - W~.o)u ~ + O(  k 3) (30) 

where 

and 

e = �89 (31) 

a = �89 (31') 

To be sure that (30) are the orbital equations we must verify the geodesic 
hypothesis. In order to do this let us make no initial assumption about the 
character of the field. Accordingly with the geodesic hypothesis, orbits 
satisfy the equations 

F, , , .xmx.  = iA (32) �9 - p - - = A ~ o ,  4 �9 - X o + rmnXmX n 

where F~.  are the Christoffel symbols of second kind, A is a Lagrange 
multiplier, and 

2p = u o = O (  k I/2) (33) 

The first three equations (32) are equivMent to 

li e + F ~  + 2 i r O ~ 4 u ~  - F4~ = Aup (34) 

If  the field is stationary it is easy to see that 

re  _!~p~r~, +g~, ,~  _g~,,~,]+�89 
p _ !  pot 1 p 4  

F ~ a - -  2 g  [ g 4 a , ~  (35) 
- g~4,~ ] + ~g g44,~ 

F ~ 4  = 2tS ~ 4 4 , a  
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Then substituting (35) in (34) and supposing that gab = t~ab§ Tab where 
%b = O(k  ~) we have by a straightforward calculation 

1 1 1 
/-Ip ~ 2'Y44,p -- 2'Ypo:'~44,(z -I- ~( ')//.r i., -I- ~//~p,/j. 

-y,~.p)u~u, + i(y4p.~ - 3%.p) u~ = Aup (36) 

Doing the same as before with the fourth equation (32) we get 

Y~4.,u,.u~ + iy44.~ ( u~ 1 - Yagu~) -~Yp4Y44.p = iA (37) 

and from this and (36) we obtain 

+:y44.p -:y,~?44.~ :(y~p.~ + y~p.~ 

-- "/t~,,p)U~U,, + i ( T 4 p , ~  - -  ) ' a m , p )  U~ = T44,~Ut~Up + O(k 3) (38) 

Finally carrying (23) to (38) we obtain 

ap - Ep + 2 vv+ - �89 (Ys~),p +~[Y(pu~)]+ 

+�89 VS.p),. + (2 VS,p);. - (2 Vg.~).p]u.u~ 

+ i{[--2KiJ( pup)].~, + [2K/J(pu,~) ].p } u,~ 

= - 2  V.u .up  + O(k  3) (39) 

which, on taking into account (31) and (31'), result in the same equations 
written in (30). 

Having demonstrated the geodesic hypothesis, let us now obtain the 
orbital equations at great distance. We write as usual 

x x  1 r = r + ~ C O S  @+ (3 cos 2 @-1)+O (40) 

where r = Ixl, r ' =  Ix'l, cos q, = xx'/~r'. Then writing ~ = I/r, f ' =  1/r' we have 
from (24"), (24"), (31), and (31') 

v=, f pa~x'+,~ f ( , ' )-:  cos~pd3x '  

+�89 f (r 3 cos 2 ~b- 1) d3x'+ O(k2~ 4) (41) 

w.=efpu.d x'§162 (~ ' ) - lcos~pu~d3x '  

+1~3 f [(~,)--2pU/.~( 3 COS 2 i]/- 1)] d3x'§ 0(k5/2~ 4) (41') 
J 
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T - - - r 1 6 2  1 (~')-1 COS ~b 7 d3x' 

-�89 f [(6')-27.(3 cos O-  1)] d3x'q-0(k364) 

where 

183 

(41") 

because 

v h - r = � 8 9  ( p - r )  d3x '+x~3f fx ' (p-7")d3x ' 

..~1~3 f (~,)--2(p -- 7.)(3 cos 2 O - 1) d3x'+ O(k3~ 4) (44) 

= xr 3 f x'(p - 7") dax' (45) 

Now the second term in (44) can be vanished introducing the mass 
center 

x'( p - 7") a3x' (46) 
R= j (p_7") d3x' 

or, equivalently, 

7" = S,~,~ - pu,~u~ (42) 

is the spatial part trace of the energy tensor. 
Now, with the order of approximation considered, from (41) and (41") 

we have 

"~-e2[f (et)-lpcosl~d3x'-- I (e')-lT"cos~lld3 x'] 

- I  (~')-27"(3 COS2 ~b-1)d3x']+O(k3~ 4) (43) 



184 Gambi and San Miguel 

and, as in Fock (1964), we then have 

V+ T = ~ ( P - r) d3x' -F �89 (~')-20 (3 cos 2 r - 1) d3x' 

- f  (r c~ ~b-1)d3x']-l-O(k31~ 4) (47) 

Writing the last term of the right-hand side of the form 

ll~3[f ( r162162  (~:')-213(xx')(~:~:')-l]~-d31'] (48) 

or, equivalently, in the form 

~1~ [3(XIXI-'~- X2X2-~- X3X3) - - (Xl"q-  X2-['- X a ) ( X  1 -~- X2 - ~ X ~ 2 ) ]  dm 
k ,J 

f f  1 2 ! ! v 2 2 2 2 ;2 ,,2 ~: [3(X1XI q- X2X 2-[- X 3 X 3 )  - -  -- (Xl-~X2-l-X3)(Xl +X2 +X~2)] d t  (49) 

where d r =  rd3x', we see in the first term of (49) the moments of  inertia 

= f ( x 2 W x 3 ) d m ,  I~=f(x~2+x'32) dm Ix, t2 t2 

(50) P 
= J ( x l  + x 2 ) d m  Ix3 v2 r 

and in the second we have 

Ex, = f (x~2 q-x~2) d~, Ex:= f (x~2-F x~2)d~ 

(51) 

f (x~ +x2 ) Ex3= t2 t2 d~ 

which, by analogy with (51), we call moments of inertia for the stress. 
On the other hand, if the massive body has an equatorial plane of 

symmetry, we can choose the axis OXl and Ox2 in it. This means that the 
quadratic forms Ix~xj and Exixj are reduced simultaneously to their diagonal 
form. Furthermore we have 

Ix, = I~2 = I e (52) 

J~xl= J~x2-'~- f_,e 

Then (49) can be written in the form 
1 5 2 2 ~r [Xl(Ix3- Ie)W Xe(Ix3- Ie)+ X2(Ix3- Ie) 

-x2a( Ex, - Ee) - -  x2( E,,3 - Ee) - x~( Ex, - Ee)] (53) 
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or, using spherical coordinates  (r, O. 8), in the form 

�89162 - 3 sin 2 8)[(Ix3 - Ie) - (Ex3 - Ee)] (54) 

with that, on substituting in (47) this expression, we have 

V +  T =  m e -  f r189162  sin 2 8)[(Ix3-Ie)-(Ex3-Ee)]+O(k3r 4) (55) 

or, what  is the same, 

V+ T - m ~ - "  i s 2 2 - t~:+~: ( 1 - 3 x s ~ ) [ ( I x 3 - l e ) - ( E x a - E e ) ] + O ( k 3 ~  4) (55') 

In a similar way we can write (41') in the form 

W~ = ~:2 f (~')- ' (xx')(~: ')pu~, d3x' 

+1~3 f (~:,)-2pu~.[3(xx,)(~:,) _ 1] d3x' (56) 

Introducing finally (55') and (56) in (30) we obtain definitely 

tip = [m~ - tse +1(3(1 - 3x2~2)l(Ix~ - Ie) - (Ex~ - E~)}],~, 

+ [ me + �89 - 3x2~:2)(Ix, - I,)],p 

x {u 2 - 4[ m~: + �89162 - 3x32r 2) (Ixs - Ie)]} - 4uo 
x {[ rn~: + �89162 -3xs2se2) (L,~ - I.)],.u~. } 

+4u~ .{ [ , ' -  I ( xx') ,' pup dsx' ]. - [ r I ( xx') ,' pu~. d3x' ],p } 

{ I ~pup[6(xx )x~, -15(xx')2x'~,7- 3(r s] + 4 u ~  1 , , s 

- f �89 + O(k3~ 4) (57) 

which are the equat ions of  mot ion wanted.  

5. T H E  P E R T U R B A T I O N  D U E  TO S T R E S S  

Writing equations (30) in the form 

up = v p + Fp (3o') 

we see in the first two terms the Newtonian  equations of  mot ion because  
V is the newtonian  potential  per  unit mass. Following Synge (1969) we call 
to the rest 

Fp = V p ( u 2 - 4 V )  - 4 u p l ; r + P p  - Q,p +4(wp.~. - w~..p)u~.+ O(k 3) (30") 
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the relativistic perturbing force per unit mass. It must be noted that, as can 
be seen in (30"), this force not only depends on the classical potential V 
but also on the body's  own stress and rotation. On the other hand, as it can 
be seen in (57), the perturbation term of F o on a classical orbit due to them 
appears in these equations as gradient of  the potential function 

"~ ..[_ 1 3  3 2 5  = - t ~  ( ~  -~x3~ ) [ ( I x 3 - I e ) - ( E x 3 - E e ) ]  (58) 

Now in order to s tudy its effect on an orbital motion we begin considering 
first an equatorial trajectory. Analytically the trajectory for a test particle 
can be obtained by means of equations (30), but as the field (25) is stationary 
these equations have the first integral of  energy as all fields with this 
character. Furthermore, in our case also these equations have another first 
integral which is the one angular momentum because the generating body 
of  the field has an axis of  symmetry. Then, as these two first integrals are 
enough to determine an equatorial trajectory if, as we are supposing, the 
body has also an equatorial plane of symmetry, we can use these two 
integrals in order to determine the equation for an orbit of  this type. The 
result is easy to obtain. We take the integral of  energy for equations (30) 
which is (see Appendix A for its derivation) 

( �89 2 -  V )  1 " 1 " - ~KJS,~,~ + ~KJ( pu 2) + 5 V 2 + 6 E V  

= E --32E2q- O ( k  3) (59) 

where V is given by (24") and E is the constant which we can call total 
energy per unit mass of  the test particle, and we take the integral of  angular 
momentum which is (see Appendix B) 

R2q~ = 4(x I I.V 2 -- X 2 Wl) + h[ 1 - 4 V+  O(k2)] (60) 

where W~ is given by (24") and h = A ( 1 - E ) ,  where A is the angular 
momentum per unit mass. Then passing to polar coordinates r, 05, we write 
(59) and (60) in terms of  them, and combining conveniently and in the 
usual way the resultant expressions, we have 

where ~ =  1/r  and 

F(~:) = ~2_ h-212(E + V ) + 2 P - 2 Q + 6 V Z + 4 E V - 3 E  z] 

+ h-3[16(E + V)(x ,  W2 - x2 Wl)] + O ( k  2) (61') 

with P and Q given as in (31) and (31'), respectively. 
Now if one wishes to analyze the orbit we must study the advance of 

its apsidal line. As is known the formula for the general advance is given by 

e = 2z~b - 2rr (62) 
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where 

Aq5 = [ - F ( ~ ) ]  -1/2 a~ (62') 
1 

with F(~.) as in (61') and ~1 and ~2 satisfying 

F( r  = F(~2)  = 0, ~2> r  (62") 

Owing to the singularities in the integrand of  (62') it is necessary to 
introduce a new funct ion G(~)  without  singularities at the end of  the interval 
(~1, ~2) which is given by 

( B - B , ) ( ~  - ~2)  - ( B - B z ) ( ~  - ~ )  
O(~) = (63) 

(~-  ~1)(~- ~2)(r ~) 

where 

B(s  c) = h-212(V - m r  2 

- h-116(E + V ) ( x l  W2 - x2 W1)] + O ( k  2) (63') 

and B1 = B(r B2 = B(~2). Then  in terms of  G(r  we have 

A@= [(r162162162162 (64) 

Now in order  for  (62') to be solved it is necessary to do some analytical 
simplifications in (41), (41'), and (41"). Thus if we take 

V = mE +/z3 ~:3 

W .  = r f ( r  " a3x' 
./ 

P = P l r 1 6 2  3 (65) 

Q = qlCq- q3~ 3 

where /z3 = O(k  2) is the quadrupole  potentiate, p l = c o n s t =  O(k2) ,  p3 = 
const = O(k2),  ql = const = O(k  2) and q3 = const  = O(k  2) [see (55) and (56)], 
then B(r  can be writ ten in the form 

n ( ~ )  = b o +  b l ~ +  b2~2+ b3~3+ �9 �9 �9 + O ( k  2) 

where 

bo = - 3 E 2 h  -2 

bl = 2h-2(p1 - ql + 2 m E  - 4h- lEL3)  

b2 = 6m2h - 2 -  8mL3h -3 

b3 -- 2h-2(/~3 +P3 - q3) 

(66) 

(66') 

(66") 

(66") 

(66 '~) 
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and L3 is given as in (26). Then expanding G(~) in (64) and taking into 
account (62) and (66) we have for e the value 

e = eobo+ e lb l  + e2b2+ e3b3+" �9 �9 + O(k 2) (67) 

where 

I /2  ~ . =  [(~,~-~)(~,-~,0] -'/~(~'"-~q)(r a~, (68) 

Now, integrating here for n = 0, 1, 2, and 3 we have 

eo = 0, el = 0, e2 = 7r, e3 = 3~'mh-2 + O ( k )  (68') 

and so we have for the advance the expression 

e = 6"rrm2h -2 - 8~ 'mL3h-3  + 6.n.mtx3 h-4  

+ 6qrmp3 h - 4 -  6~'mq3h-4 + �9 �9 �9 + O(k 2) (69) 

As it can be seen in (69), here appear the known advances of  
Schwarzschild and rotation of the massive body together with the classical 
contribution due to its oblateness and also the one due to its stress. Further- 
more it must be noted that, as it can be seen in (66'), although bl has a 
nonzero value, its corresponding term el in the expression (67) vanish, as 
we see from (68'). This means that, in contrast with the first term in the 
expansion of  V, the first terms in the exflansions of  P and Q in (65) (and 
so, the first term in the expression of T) do not give any contribution to 
the advance of  perihelion for an equatorial orbit. Then in order to see what 
is their contribution for a general orbit let us use equations (57), and with 
these equations we shall use the theory of perturbations. With this purpose 
we introduce the parameters 

3 I x ~ - I e  K '  3 E x ~ - E e  
K = ~  mr~ ' 2 mr  2 (70) 

of  which the first is proportional to the known dimensionless constant J2 
(the parameter associated to the quadrupole of the body). As before m is 
the mass of  the body and re its equatorial radius. Then, using the third 
Kepler law for the osculating orbit of period T associated to the classical 
equations contained in (57), we write (58) in the form 

~ = _ t ~ + ~ 3 ( ~ _ x ~ 2 ) ( / ~ _  , 2 3 K )noa re (71) 

(where no = 2~r/T and a is the semimajor axis of  the classical orbit), or in 
terms of  its elements 

~ + ~ 3 ( l _ s i n 2 i s i n 2 u ) ( K  , 2 3 2 = -  - K  )noa re (71') 
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where i is the inclination, f the true anomaly, to the argument of perihelion, 
and u = to + f  

Now, in order to determine the secular variation, V, for the orbit, we 
average (71') by means of the integral 

l f ~  r 
V~ =-~ R dt (72) 

The result is The result is 
�9 V s  ~ -", - 1  t 2 2 1  1 �9 2 - t a  + ( K - K  )nore(~-~sm i )( l-e2) -3/z (73) 

where e is the eccentricity for the osculating orbit. As can be seen in (73), 
the potential function which gives the secular perturbation due to the stress 
depends only on the inclination, eccentricy, and semimajor axis of  the 
osculating orbit. 

Now in order to obtain the evolution of the orbital elements we apply 
the Lagrange equations for the perturbed motion (see, e.g., equations (59), 
Chap. IX of Stiefel and Scheifele (1971). From these equations we deduce 
that (73) does not induce variations in the variables i, e, and a previously 
mentioned. The only parameters which change due to V~ are the true 
anomaly, M, the longitude of  the ascending node, ~ ,  and the argument of 
perihelion to, following the equations 

K - K '  
)~/= no a2 r~no(1 - ~  sin z i)(1 - e2) -3/2-  2 (74) 

noa 3 

K - K '  
= a ~ r~no cos i(1 - e2) -2 (74') 

K - K '  
_ _  2 s . 2 ( 7 4 " )  o ) -  a2 reno(2-~sm i ) (1 -e2)  -2 

Then integrating (74), (74'), and (74") we obtain 

6M=[no K - K '  2 [ 3 2i)(1_e2)_3/2 2 f i t  -~ r~no~l-~sin -noa3 j (75) 

K - K '  
6f~ a ~  r2no cos i(1 - e2)-zt (75') 

K - K '  _ _  2 5 �9 2 6o9- a2 r~no(2-ssm i ) (1-e2) -2 t  (75") 

Now since (75), (75'), and (75") give the changes of  M, lI and to during 
t seconds, it follows that, after a period T, these changes are finally 

6M K - K' 2f  
~ -  - no a ~  r~no(1-3 sin 2 i)(1 - e2) - s / z - ~  (76) 

n o  a 3  
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~ K - K '  
T a2 r~nocos i ( 1 - e Z )  -2 (76') 

&o K - K '  2 5 �9 2 T a2 reno(2-3 sin i)(1 - e2 )  -2  (76") 

As can be seen in (76), (76'), and (76"), only the classical prediction 
for the mean anomaly is affected by the first terms in the expansions of P 
and Q in (65). Indeed if these two terms are not taken into account then 
the value of  i for which 

6 M  
'= no (77) 

T 

i s  

i = arc sin ~/] (78) 

whereas when they are taking into account we have for this value of  i 

8M ~" 
T = n o -  2--noa3 (79) 

On the other hand, for any other value of i, it must be noted that the 
nonspherical distribution of the stress also manifests itself changing the 
classical parameter K by K - K '  in all equations (for comparison with the 
classical predictions see, e.g., equations (69), Chap. IX of Stiefel and 
Scheifele, 1971). In particular, when i = 0 we have an advance of perihelion 
which corresponds to the fourth and fifth terms obtained in (69). In any 
case all these contributions are, according to (57), O(k2~3). 

A P P E N D I X  A: THE I N T E G R A L  OF E N E R G Y  [see equation (59)1 

Let gab be the metric, 

g,b = 6ab + Yah (A1) 

where 

y~,, = 2( V+ V2) 8~, -2KJ[(pu~u~)*]  

" 1 * V g V z , ] . ~ O ( k  3) + 4J[~KS~  + ( V 2 - 

Y~4 = -2Ki](pu~.)  - 8 i J (  V,r Wr - V,~.~ W,~ (A2) 

+ W g A V - -  VAW~) -b  O ( k  7/2) 

~/44 = - - 2 (  V - -  g 2 ) - KJSo. o. ~ K J (  pUo.go- ) ~- O ( k  3 ) 
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with 

V =  -4r 

and 

Further 

W~ = - 4 M ( p % . ) ,  

s L = & ~  ' - ~ 6~. ~S~ 

( pu, .u~)* = (ou,~u~) - � 8 9  

Jf(x,  t )= - (4"n ' )  -a ff(x' , t)lx-x'l-' d~x' 

191 

K = 8"n" 

(A3) 

(A4) 

au 0 o = 0  ' - -  = o ,  o & .  = o ( A 5 )  
at ot ot 

and 

o = O ( k ) ,  

Because of (A5), the 
equations (32), 

have the integral 

As 

u.  = O(k ' /2 ) ,  S ~  = O ( k 2 ) ,  0 =  O(k~/2 ) ( A 6 )  
at 

Lagrange equations, which are equivalents to 

d OL OL 
- -  = 0 ( A 7 )  

dt o~. 0%. 

aL 
L -  ~ . - -  = 1 + E (A8) 

o& 

From (A8) we deduce 

L - I (  L2 - - 2 1 . % . ~  O L 2'~ ] 02~.I - 1  = E (A9) 

L = ( - g ~ 2 ~  - 2ig~42~. + g44) 1/2 (A10) 

we deduce from (A9) 

L-l(-ig,.4:c,. + g44) - 1 = E ( A l l )  

Now, taking into account (A6), (A2), and (A3), we have 

y.~ = O(k) ,  Y~ ----  0(k3/2), "/44 = O(k) (A12) 

and then, carrying (A1) to (A l l ) ,  it results in 

E =�89 1 1 2 2 ~/44) "~2"Y,u.vUp.Uv "~ -- y44)(3u + 744) + O(k 3) (A13) 
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As the principal part of (A14) is 

�89 2 -  V 

we have from (A13) 

(�89 ~- v) -~]&~ "~Y(pub 
+ 3U4+ 3u2V+ lV2+ O(k  3) = E 

because 

(A14) 

(A15) 

�89 2 -  V+ O ( k  2) = E (A16) 

Finally from (A15) we have 

(�89 2 -  V ) - � 8 9 1 8 9  3) (A17) 

which is the integral of energy. 

APPENDIX B: THE INTEGRAL OF ANGULAR M O M E N T U M  
[see equation (60)] 

As the azimuthal angle ~b is a cyclic coordinate, we have 

OL 
�9 - A (B1) 

Using Cartesian coordinates, (B1) is reduced to 

OL OL 
x ~ - - - x 2 - -  = - A  (B2) 

From (B2) we deduce 

L 2 k = 1._,r e 0 1  =a  (B3) 

and from (B3) we have 

L-~[x~ g2.Ycg - x2gl,,Jr + i(xlg24 - x2g~4)] = A (B4) 

Taking into account (A2), (A3), and (A6), from (B4) we deduce 

(1 +�89  2 - � 8 9  - (x ,  ~,2,,u,, - x2~,, , ,u, ,)  

+ i(xl 724-x23q4)+ O ( k  5/2) = A (B5) 

and substituting (A2) in (B5) we have 

A = ( l + � 8 9  s/2) (B6) 
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(B6) is reduced ,  t ak ing  into account  (A16),  to 

( l + E + 4 V ) ( x l u 2 - x 2 u O - 4 ( X l W 2 - x 2 W a ) + O ( k S / Z ) = A  (B7) 

which  in cy l indr ica l  coord ina te s  is r educed  to 

( I + E + 4 V ) R 2 d ) - 4 ( x ~ W 2 - x 2 W O + O ( k S / a ) = A  (B8) 

But as 

A E  = ERe~b + O ( k  5/2) (B9) 

we have 

( l + 4 V ) R Z d ) - 4 ( x l W 2 - x 2 W 1 ) + O ( k S / 2 ) = A ( 1 - E ) = h  (B10) 

and  finally we have 

R2~ = 4(x l  W 2 -  x2 W~) + hi1 - 4 V + O(k2)]  (B11) 

which  is the in tegral  o f  angu la r  momen tum.  
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